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Lennard-Jones was among the earliest to stress the dominant role played by the exclusion principle in chemistry
and was the first to exploit the properties of the same-spin pair density to demonstrate the most probable
spatial distribution of a given number of electron pairs. This paper demonstrates that a related distribution
function, the conditional probability for same-spin electrons, is so successful in recovering the geometrical
models associated with differing numbers of electron pairs, as suggested by the work of Lennard-Jones and
subsequently adopted as the basis for the VSEPR model, that we propose that it be called the Lennard-Jones
function, or LJF. The maxima in LJF show where the density of the other electrons is most likely to be
found, relative to a fixed position of a same-spin reference electron. The digonal, trigonal, tetrahedral,
bipyramidal, and octahedral patterns of maxima obtained in such displays demonstrate that these are the
most probable arrangements for corresponding numbers of electron pairs. LJF provides a quantitative measure
of the extent of exclusion of the density of one electron from that of another of the same spin. There is a
remarkable similarity in the patterns of spatial pairing exhibited by LIFLgnd= —V?o(r), and the manner

in which the two-electron correlation contained in LJF is transmitted to the density and heh¢g ie
accounted for.

Lennard-Jones and the Electron Pair particular relative arrangements of a given number of same-
spin electronsand by evaluating the probability distribution
In an address to the British Association for the Advancement function for two same-spin electrofs?
of Science in 1954 Lennard-Jones stated: The first method attempts to give the relative positions of all
“Electrons of like spin tend to avoid each other. This effect the electrons simultaneously, which places the results in a
is more powerful, much more powerful than that of electrostatic nonphysical many-dimensional space. One may, as Lennard-
forces. It does more to determine the properties and shapes ofjones did in this approach, fix the positions of all electrons but
molecules than any other single factor. It is the exclusion one and then search for the position of the remaining electron
principle which plays the dominant role in chemistry. Its all- that maximizes the value of the wave function. One of the
pervading influence does not seem to have been fully realizedauthors (R.J.G.) used such descriptions of the most probable
by chemists, but it is safe to say that ultimately it will be relative positions of the electrons in establishing the set of rules
regarded as the most important property to be learned by thoseunderlying the VSEPR model of molecular geométri?
concerned with molecular structure.” The second method makes use of the fact that it unnecessary
These remarks followed a number of investigations by to know the relative coordinates of all the electrons simulta-
Lennard-Jones wherein he demonstrated that the operation oheously to determine the properties of a molecule. Instead, it
the Pauli exclusion principle keeps electrons of like spin is sufficient to know the relative probability of two electrons
maximally separated, independent of their electrostatic interac-being in prescribed positions, information given by the two-
tions. He and Pople showed, using simple approximations to electron density distribution, also known as the pair density.
the orbitals in atoms and some molecules, that the most probabldts integration over the coordinates of the two electrons, that
interelectronic angle equaled 18fbr two electrons, equaled s, over the space of each electron, yields the total number of
12¢° for three, and assumed the tetrahedral value for four electron pairs, just as integration of the one-electron density
electrong™ yields the total number of electrons. By fixing the coordinates
Within the orbital model, the requirement of the Pauli of one electron of given spin, the so-called reference electron,
exclusion principle that the wave function be antisymmetric with one can obtain a map in the real space of the second electron,
respect to the interchange of any pair of electrons is met by which can be of either spin, that indicates its most likely position
limiting the population of a given space orbital to two electrons relative to that of the reference electron. Lennard-Jones’
of opposite spin. This simple consequence of antisymmetry arguments are based on the two-electron density for same-spin
within the orbital model tends to obscure the more fundamental electrons which he termed tepace-correlation functionWhile
nature of the exclusion principle. The work of Lennard-Jones he had to approximate the orbitals appearing in the space-
focused attention on the consequences of the antisymmetrycorrelation function in terms of linear combinations of simple
requirement beyond the orbital model. He did this in two Slater atomic-like functions, he was still able to determine the
ways: by demonstrating, as had othersthat the corresponding  principal angular form of the relative distribution function for
many-electron wave function attains a maximum value for a given number of same-spin electrons.
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Isolating the Exclusion Effect in Terms of the Fermi Hole effects!’ In this orbital product model, each electron moves

Later investigations of the pair density introduced and focused N the average field of the remaining electrons, and hence there

on the concept of the Fermi hole, that part of the two-electron :-Sior\lses/ce):retlr?gOor]rbci)I:;hsxr:r?atlr?n(es i?\irilgjéggsb Oftﬁéﬁ(;:ﬁigt ﬁ’r':e
distribution function that isolates the effect of the exclusion trization (’)f the product funcfi]on results in tlzle correlati%n of
principle on the spatial correlation of same-spin electfdns P

The density of the Fermi hole for a fixed position of a reference Zﬁgre]-stphlg Segt_ag;r”oen ds,C?)flg(la;mcl?!?)?r;);gig?\ng:t\;ggﬁ[[ittlaoglécltr; gr?;
electron determines the extent to which the density of another 9

same-spin electron is excluded from its neighborhood. This by proceeding beyond the Hartrelock approximation has only

function integrates to minus one electron, and the Fermi-hole m;nr?rreee—flf:%i:tlf v?arllvg}ﬁn?:?igr?t)s/incgetirtu(a:olr:reerlg}[le:glrﬁ. s;rr]#es-sthii
density thus describes how the density of the reference electronelectrons is ideal for iIIustr:altin the effects of th)é exclusign
is spread out in space, thereby excluding an equivalent amount ’ 9

: ; . o SR . inciple.
of same-spin density. With this interpretation, it is clear that if princip . . .
the density of the Fermi hole is spatially localized, then so is Since the HartreeFock pair density for electrons of different

the reference electrdd spin is uncorrelated, thes pair density is given simply by the
The Fermi hole correlates only the motions of same-spin product of thex- and §-spin densities multiplied by one-half

electrons. In the field of a central nucleus it is the existence of S° 25 not to count the same pair twice,

the potential wells created by the presence of the ligands that o _ o

leads to the formation afS electron pairs by the trapping of p ﬂ(rl’rZ) =12 (rl)pﬁ(rZ) @
the localized Fermi holes in the potential wells of the ligands.
Since only electrons of like spin are excluded from a localized
Fermi hole, then, in a closed-shell molecule, the spatial
localization of ana spin electron implies the equivalent
localization of another of spin and the result is the formation
of a localized pair. From this point of view, the minimum
energy molecular geometry should be obtained when the spatial
arrangement of the potential wells determined by the relative o _ o o o

orientation of the ligands is coincident with the most probable prara) = (U2)7(ra}{p7(ry) + h(ryro)} (2)
arrangement of the localized Fermi holes.

A review!“ of how the properties of the Fermi-hole density
can be used to determine the extent of the spatial pairing of
electrons and of how this localization is reflected in the
topologies of the laplacian of the electron den'Signd of the
electron localization function of Becke and Edgecotfiles
appeared recently. The paper relates the properties of these twoye
functions to a quantity termed the conditional probability, the
probability of finding an electron of given spin at positios)
conditional upon the same-spin reference electron beimg at
The form of this function was discussed and illustrated in terms
of its two contributing densities, the spin density at position
ra, p*(ro), and the density of the Fermi hole%(r1,r2), whose
definition in terms of the HartreeFock orbitals is given in refs

with a corresponding expression for thfie pair density.
Because of the presence of the exchange correlation for same-
spin electrons however, the same-spimlensity atry, p*(r»),

is reduced in value by the density of the Fermi hole, and the
oa two-electron density, the space-correlation function of
Lennard-Jone$,s given by

The term in curly brackets ishe conditional probability
0%(rpry), or LIF. It is the difference betweegii(r,), the spin
density atr,, and the magnitude of the Fermi-hole densityat
for a given positiorr; of the reference electron. Thus the space-
correlation function is given by (1/8%(r1) 0%(rz,ry).
The conditional probability®(r,,r) is, thereforea measure
the amount of same-spin density not excluded from the
positionr; by the spreading out of the density of the reference
electron atr;. Clearly, the maxima in a plot af*(r,r1) for a
fixed position of the reference electron will show where the
density of the remaining same-spin electrons is most likely to
be found.

The Fermi-hole density equals the spin density where

o ) i r,, thereby totally excluding all other same-spin density from
13 and 14. The latter density is a negative quantity correspond-the position of the reference electron. Consequently when

ing to the decrease in t_he value of the sam.e-spin density at _ f2,0%(r1,r1) = 0. The integral oB%(r,r1) over the space of
because of the spreading out of the density of the referencethe second electron equalé — 1. That is,0%(rr 1) describes

electron with coordinate,. the spatial disposition of the remaining same-spin electrons for

| In this paper we Shg"g ﬂll_at the dsg)atlal ,d'St(;'_bu“(}”hOf the  given position of the reference electron. A program has been
electron pairs suggested by Lennard-Jones' studies of the Spaceyien 1o ocate and characterize the critical points in LJF. In
correlation functiofican be recovered in terms of the properties this situation,%(r,,r1) is expressed as a function of for a

of th.G_ conditional 'prolcl)ablllty. Indeed SO succe§sful is the fixed position of the reference electron and a critical point
condlt_lonal p_robgblhty in recovering the geom_etrlcal models corresponds to the vanishing of the gradientfr,r1) with
associated with differing numbers of electron pairs as SuggeStedrespect to the coordinate. Of primary interest are the number
by the work of Lennard-Jones and subsequently adopt.e_d as theng location of the local maxima in LJF, critical points in
basis O.f. the VSEPR ”?O‘fé‘ that we suggest the conditional 0%(ro,r1) where all three curvatures are negative. LJF attains
probability for same-spin electrons be called the Lennard-\]onesitS maximum value at a point where the density of the Fermi

function, or LIF. hole vanishes, the value of LJF then equaling the spin density
p%(r2), eq 2. Thus the ratid®(r,r1)/p*(r2) is a measure of the
degree of exclusion of the density of the reference electron with
The conditional probability can be defined at any level of coordinater; from the pointr,, and when multiplied by 100%,
theory that includes antisymmetrization of the wave function. it yields a percentage measure of the effect of the Pauli exclusion
The effect of antisymmetrization is so pronounced and the principle. This ratio, denoted by(r,ri), is the percent
resulting correlation of the motions of same-spin electrons so exclusionof the density of the reference electron from the point
strong that even the simplest of these theories, the Hartree r.
Fock single-determinant model, provides an excellent description From eq 2, the decrease in the same-spin pair density for a
of the density of the Fermi hole and the associated exclusiongivenr; andr; is determined by the produ@®(r)h*(r1,r2),

The Lennard-Jones Function
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which equals the Hartreg~ock exchange density. The total

number of same-spin electrons excluded from a region of space

Q, a quantity denoted by**(Q,Q2), is obtained by the
corresponding integration of this product over the coordi-
nates of both electrord. The limiting value ofFe*(Q,Q) is
—N%(Q2), the spin population of regiof2. Thus the ratio
[Fe4(Q2,Q)|/N*(Q) is a measure of the degree of localization of
the a electrons inQ, because when this ratio equals unity, it
implies that the Fermi density for the electronstinis totally
contained irQ, thereby excluding all other same-spin electrons
from Q. In this unattainable but approachable limit, there is
no exchange of the electrons insi@ewith those outside of2,
and they form two separately localized sets. When multiplied
by 100%, this ratio yield$(€2), the percentocalizationof the
electrons inQ.13

The populations and Fermi correlations reported here are for
atoms, regions of space bounded by surfaces of local zero flux
in Vp.18 Atoms and their properties are defined by the quantum
action principle and consequently are proper open systéms.
All properties of such open systems are additive to yield the
molecular values. The properties predicted in this manner
recover the experimentally determined contributions to the
volume, energy, polarizability, and magnetic susceptibility in
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those cases where the results give evidence of atomic or group

contributions that are transferafén addition to being additive.
The wave functions were calculated using GAUSSIAN 94 with
the 6-311-+G(2d,2p) basis sét All of the critical points in

[

LJF discussed in the paper have been located and characterizedrigure 1. Contour maps of the Lennard-Jones function LJF for BeH

The electrons in the core orbitals are omitted from the
calculations of LJF. These electrons are strongly localiz¥d
and the full spin density of the core appears in the displays of
LJF for any position of the reference electron removed from
the core region. Since the outer density of a core extends into
the valence region, the associated contours obscure the behavi
of the valence electrons of the central atom. This is illustrated
and discussed below in the case ofsPH

In what follows we demonstrate that the conditional prob-
ability 6%(r,,r1) or Lennard-Jones function establishes the most
favored patterns of electron localization for two, three, four,
five, and six pairs of electrons, patterns that are in full accord
with the patterns of electron domains assumed in the VSEPR
model?® It is also found that the localization patterns defined
by LJF can be mapped to a remarkable degree onto the maxim
in the negative of the Laplacian of the electron density, the
quantity L(r) = —V2p(r), found in the valence shell charge
concentration VSCC of an atom. The maximd.(n) determine
the positions within a molecule where the electronic charge is

maximally concentrated. The number, angular distribution, and i |ocalization is little changed for motion of e*

0)

and BH;. The boundaries of the atomic basins and the bond paths are
shown on each map. The position of the reference electron is denoted
by a star and is referred to as e*. LJF equals zero at the position of e*.
The contours increase in value from this point and inward from the
exterior of the molecule, starting at 0.001 au and then in stepsxof 2
10", 4 x 10, and 8x 10" with n beginning at—3 and increasing in
steps of unity. (a) e* is at the position of a proton in Bebihd LJF is
essentially zero over the associated basin. (b) e* is moved to théiBe
bond critical point, and the second same-spin electron remains almost
totally excluded from the starred basin. (c) e* is at the Be nucleus. (d)
e* is at a proton in BH (e) e* is at a B-H bond critical point.

the same diagram as showing that nearly all the density of the
second same-spin electron is excluded from the basin of the
atom containing e*. Correspondingly, the percent exclusion
X(r2,r1) equals 99% at the maximum in the basin of the second
hydrogen. WherX(r,,r1) = 100%, the pair density reduces to

%nea, pair atr; and another at,. While LIF always equals

zero at the position of e*, the essentially complete removal of
all other same-spin density from the basin containing e*
indicates that the Fermi-hole densh$(r1,r2) equals—p®(r»)
over the entire basin and the Fermi hole is localized.

within

relative size of these charge concentrations CCs have beenyq pagin of the first proton. Thus as illustrated in Figure 1b,

shown to recover the properties of the electron domains of the
VSEPR model?

LJF for Two and Three Electron Pairs. The molecules
BeH, and BH; contain respectively two and three pairs of

even when e* is placed at the Bél bond critical point, that
is, on the boundary separating the two atoms, only a small
amount of same-spin density appears in the basin of the
reference atom and(ro,r1) at the maximum in LJF remains

valence electrons, the valence density being found largely within equal to 99%. Since the same behavior is obtained for the
the basins of the hydrogen atoms. The net charges on theelectrons of either spin, the valence pair density for this molecule
hydrogen atoms, as determined by the integration of the densityjs well represented by two pairs of electrons, each pair localized
over the atomic basir®8,are—0.87e and-0.70e, respectively.  within the basin of a hydrogen atom. When the reference
In Figure la the reference electron, hereafter referred to aselectron is placed at the position of the beryllium nucleus, Figure
e*, is situated at the position of one of the protons in BeH 1c, the density of the second same-spin electron is equally
and the LJF plot shows that the density of the second same-delocalized over the basins of both hydrogen atoms. In this
spin electron is strongly localized within the basin of the second case, bottw electrons contribute equally to both hydrogen atom
hydrogen atom. The small amount of spin density appearing basins, a situation corresponding to the maximum delocalization
in the basin of the beryllium atom is from the valence orbitals of the valence electrons, air,ri1) decreases to 56% at both
that extend into its core region. Alternatively, one can interpret maxima. However, since the valence density lies primarily
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maximum, for whichX(r,,r1) = 92%, is created in the absence
of a proton. The electrons within the basin of the hydrogen
atom are only slightly less localized than in Behith I(H) =
93%.

Figure 2b shows that upon bending the Behblecule with
e* positioned at a proton, the density of the second electron
lags behind the motion of the proton and it spreads into the
basin of the beryllium atom, as well as into the basin of the
hydrogen containing e*. While the value ¥{r,,r1) remains
essentially unchanged at the maxima in LJF, there is a
pronounced decrease in the degree of localization of the
electrons within the basins of each hydrogen atom, the values
decreasing to 86% for bent (9BeH, and to 74% for pyramidal
(109.5) BHg, Figure 2c. Thus when the Fermi hole is displaced
by a change in geometry, it becomes less localized. The
minimum energy geometries in these two molecules are obtained
when the Fermi holes are maximally localized within the ligand
potential wells.

The spatial displays of electron localization depicted by LIJF
in these two molecules are of the same form and possess the
same number and location of maxima as exhibited in maps of
L(r). Infact, placing e* at the position of a charge concentration
(CQC) in the Laplacian yields, in general, the most localized
associated LJF description, and this procedure is used in many
of the plots that follow.

LJF for Four Electron Pairs. The maps for Phj Figure 3,
illustrate a number of the general features of LJF. Placing e*
at the position of the nonbonding CC lifr), Figure 3a, leads
to the exclusion of same-spin density from the region associated

compared with 1a). (b) e* is at a proton in‘0ent Beh. () €* is on with the lone pair within the basin of the phosphorus atom and
an out-of-plane proton in pyramidal BHTwo extra contours of value to its accumulation within each of the hydrogen atomic basins,

0.025 and 0.30 au are present to indicate the small maxima formed With maxima located at the protons, as they areL{n).
along the 3-fold axis above and below the B nucleus. Similarly, placing e* at the position of a proton, that is, at a
bonded maximum irL(r), Figure 3b,c, leads to the exclusion
within the basins of the hydrogen atoms, this pattern of Of all same-spin density from its vicinity and to its localization
delocalization contributes little to the total pair density. at the position of the lone pair within the phosphorus atomic
Similar results are obtained for the Birholecule. Figures  basin and within the basins of the remaining two hydrogen
1d and 1e show the localization of the density of the two same- atoms. Clearly, this tetrahedral-like pattern of electron localiza-
spin electrons in the basins of two of the hydrogen atoms when tion which includes the lone pair region and displayed in Figure
e* is placed within the basin of the third hydrogen atom or on 6. is not driven simply by the positioning of the three potential
its boundary. As in Bel the same-spin density is delocalized Wells of the protons.
over the basins of all three hydrogen atoms when e* is placed These maps are insensitive to where e* is placed between
at the position of the boron nucleus, the valuef,,r,) at the the nuclei along a PH axis or where on the nonbonded side
maxima decreasing from 99% to 74% when e* is moved from of the phosphorus atom on the 3-fold symmetry axis, the values
a proton to the boron nucleus. These results are in accord withof X(r2,r1) varying from 97 to 100%. Moving e* to a position
previous studies of the localization of the Fermi correlation in on the 3-fold axis on the bonded side of the phosphorus atom,
these molecules which show that they are well described by ahowever, causes a significant decrease in the localization of LJF,
localized pair on the core of the metal atom and a valence pair with spin density appearing in all four tetrahedral regions, Figure
localized on each of the hydroget?s.The electrons of either  3d, and the value oX(r,,r1) decreasing to 72% at the maxima
spin are 90% localized within the basins of the hydrogen atoms in each of the hydrogen basins.
in BeH; and 77% in BH, as measured bifQ). Figures 3e and 3f show LJF for Bldbtained with the core
The maps in Figure 1 show a coincidence of the localized orbitals retained in the calculation. In these maps e* is placed
Fermi holes and the positions of the potential wells within the at the position of a proton, and each map is to be compared
basins of the hydrogen atoms, as anticipated for equilibrium with its corresponding map with the core excluded, maps 3b
geometries. They do not, however, separate the effect ofand 3c. The purely valence contours, those up to 0.02 au, are
correlation from the electrostatic effect associated with the superimposable for each pair of maps. The maximum at the
potential wells. The operation of the two effects separately from position of a proton is unchanged, but the maximum associated

Figure 2. Contour maps of LJF. (a) e* is at the proton in Befto be

one another can be illustrated in two ways. with the nonbonding electron in the VSCC of phosphorus is
Figure 2a shows LJF for BeHwith e* at the proton. The now contiguous with the spin density of the core and is present
map is essentially the same as Figure la for BeHi as a shoulder in the total display. Map 3f is in fact superim-

demonstrates that the second same-spin electron is excludeghosable on a map of the spin density, contour for contour, in
from the basin containing e* and is maximally separated from the nonbonding region along the 3-fold axis, as well as over
it by the Fermi correlation, even in the absence of a secondthe whole of the core. This implies that the density of e* is
proton. The LJF density is, however, more diffuse since its totally excluded from the nonbonded and core regions, and the
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Figure 4. Contour maps of LJF for % with added contours 0.085,
0.090, and 0.10 au. (a) e* is on an out-of-plane proton, showing the
two nonbonding maxima with inner contour equal to 0.09 au. (b) e* is
on a proton in plane with the nuclei with inner contour on bonding
maximum equal to 0.1 au. Out-of-plane nonbonding maxima are also
present, as indicated by the intervening pseudomaximum of-&l}3,
critical point. (c) e* is on an out-of-plane nonbonding CCLdf). (d)

e* is on nonbonding CC, showing exclusion of same-spin density from
one such region and its accumulation in the other.

The extent of localization of the same-spin density is
decreased when Rlis made planar or whenAS is made linear,
causing the percent localizations of the spin density within the

i . basins of the hydrogen atoms to decrease from 65 to 61% in
Figure 3. Contour maps of LJF for PHwith the added contours 0.05, -
0.06, and 0.065 au. (a) e* is at the position of the nonbonding CC in PH; and from 48 to 30% in &5 and the values of(r2r,) at
L(r), and maxima in the same-spin density appear on each of the (€ maxima in the hydrogen basins to decrease to 93 and 83%,
protons. The projected positions of out-of plane nuclei are indicated respectively. These effects are evident in the maps shown in
by an open cross. The apparent maximum lying between the two out- Figure 5. In planar Pk with e* at the position of a proton,
of-plane protons in (a) and (b) is only two-dimensional. Itis a@,  the nonbonded same-spin density is split into two less localized
critical point linking the two associated out-of-plane maxima. (b) e* is regions, one on each side of the symmetry plane, and its

at a proton, and maxima appear at the position of the nonbonding CC . . . S
on phosphorus (inner contour value of 0.065 au) and at the positions maximum value> 0.065 attained in the equilibrium geometry

of the two out-of-plane protons, as indicated by the presence of the IS Féduced to a value 0.060 au. In linear b5 the localization
(3,—1) critical point. (c) e* is on an out-of-plane proton, and maxima Of same-spin density in the bonding region is greatly reduced,
are found in the nonbonding region and on the two remaining protons. and the region becomes contiguous with a torus of nonbonding
(d) e* is on the 3-fold axis opposite the nonbonded maximum. Same- same-spin density within the basin for the sulfur atom that is
spin density appears in all four tetrahedral positions, showing that the |ess pronounced and less localized than the two corresponding

density o_f the reference electron is delocallzed over all four regions. eparately localized domains in the bent molecule. The most
The maxima are consequently decreased in extent and value. Maps (e tabl tri f th W | | ith f |

and (f) include the core density, and e* is on a proton, out-of-plane in able geome res ,0 . ese _0 mo ecules with four .va ence
(f). Each map is superimposable with its counterpart with the core €lectron pairs maximize the coincidence of the potential wells

excluded, (b) and (c) respectively, up to the outer contour of the Of the two protons in BS and of the three protons in Biith
nonbonding maximum. the tetrahedral pattern of localization of same-spin density

exhibited by LJF. Making the geometries planar or linear
sum of the LJ functions for both the and f electrons will destroys the tetrahedral pattern of maximum mutual exclusion
equal the total density of the molecule in the nonbonded region of the same spin-density and reduces its degree of localization
and the core. Clearly, the accumulation of nonbonding spin into separate spatial regions.

density would be revealed in a plot of the Laplacian of LJF,
since it would be identical to the Laplacian of the dendity).
Placing e* at the position of a proton in the$imolecule

The LJ function exhibits similar tetrahedral patterns of same-
spin localization in the equilibrium geometries of GHNH3,
and HO, the only difference being that in these cases where

leads to the localization of the same-spin density in the two the central atom is more electronegative than its third-row
lone pair regions and within the basin of the second hydrogen counterpart the bonding spin density associated with a given
atom, Figure 4a,b. Placing e* at the position of a nonbonding proton exhibits a maximum at a position along the bond path
CC inL(r) localizes the same-spin density in the basin of each within the basin of the A atom, as well as at the position of the

hydrogen and in the second lone pair region, Figure 4c.d,

respectively. The values 0K(r,ri) at the corresponding

proton. This same behavior is exhibited bfr) where both
bonding and nonbonding CCs occur within the VSCC of the A

maxima in LJF are all in excess of 99%, and the patterns of atom, in addition to the maxima io(r) found at the positions
localization are again insensitive to the precise location of e* of the protons. The values (ry,r2) at the maxima in Nkl

along the respective bonded or nonbonded axes.

and KO are in excess of 99%, and as with £ahd HS, these
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Figure 7. Contour maps of LJF for ethane with added contours 0.10,
Figure 5. Contour maps of LJF for planar BHnd linear HS with 0.13, and 0.17 au. (a) e* is on a-& bonding CC in VSCC of a
the same added contours as in Figures 3 and 4, respectively. (a) e* iscarbon, showing two €C bonding same-spin maxima and one of the
on a proton in plane with P and H nuclei. (b) e* is on a proton, showing C—H bonding maxima. (b) e* is on a bonding CC directed at another
bifurcation of nonbonding same-spin density on P. (c) e* is on a proton carbon, which results in the loss of both-C same-spin maxima.
in linear H:S.
respectively. As well as the number and relative location of
;’3( the maxima exhibited by LJF and(r) being the same, the
distances of the maxima from the A nucleus are very similar in
both distributions. A maximum in LJF occurs approximately
@ 0.1-0.2 au closer to the A nucleus than the corresponding CC
in L(r),1* the small differences being most likely due to the
‘ omission of the core density from the LJF calculations. The
angular distribution of the CCs df{r) in the VSCC of A and
the corresponding maxima in LJF are the same to the accuracy
a of the LJF plots. In HO and HS these angles subtended at
the A nucleus are 128nd 122, respectively.

The Lennard-Jones function emulate§) in the ethane
molecule, exhibiting a total of four bonding maxima in the
VSCC of each carbon atom for placement of e* at the position
of a C—H or C—C bonding CC inL(r), Figure 7a,b. Thus,
like L(r), the electron pair associated with the-C bond is
represented by two maxima, one in the VSCC of each carbon.
The LJ function enables one to demonstrate that these two
maxima represent a single pair of electrons. Locating e* at the
position of one such bonding CC results in the removal of both

b C—C same-spin maxima, with only the six—®& maxima
Figure 6. Envelope maps of LJF for PHIn (a), e* is at the position ~ fémaining. The value oX(rzr1) is in excess of 99% at all of
of the nonbonding maximum, and the same-spin density is localized these maxima.
on the three protons, envelope valee0.15 au. In (b) e* is at the The topology of ELF was first studied by Silvi and Sa¥i.
Eﬁg'g?gtg‘;i Zrnoéoiﬂ’ tﬁre]dnso?‘]rgg;'lsdpi:']ngdrigsigz 'Selrﬁ’\f;gi’eed\f’;ggéegammg While the pattern of localization determined by ELF exhibits a
Same-spin density is localized within the ph]osphorus core in both cases.generaI homeomorph'sm with that bfr), the_ maxima in ELF

generally occur at considerably greater distances from the A

values and(H), the localization of the electrons on the hydrogen nucleus than are found in(r) and in LIFt* The respective
atoms, decrease when they assume planar and linear geometriesalues of the radii of the nonbonded maxima insRid HS,

Ye
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Figure 9. Contour maps of LJF for Crp, and VH; with added
contours 0.90, 0.95, and 1.00 au. (a) e* is on a CC(of opposed to

a fluorine, showing the same-spin maxima opposed to the oxygens.
(b) e* is on a CC ofL(r) opposed to an oxygen, showing the two
same-spin maxima opposed to the fluorines. (c) e* is on a CQrof
opposed to apical proton, showing same-spin maxima opposed to basal
protons. (d) e* is on a CC df(r) opposed to a basal proton, showing
the maxima in same-spin density opposed to the apical and a basal
protons.

occur in the outer shell of the core of the metal atom, rather
than in its valence shell, the shell structure being defined by
Figure 8. Contour maps of LJF for CIFn (a) and CIi in (b) with glther L(r) or ELF? The outer core orbitals, w are
added contours 0.12, 0.15, and 0.17 au. e* is on an out-of-planE C|  included in the calculations of LJF for the transition metal
bond critical point in both (a) and (b), equatorial in (a) and axial in molecules. The second is that these maxima are in general
(b). The 0.2 au contour encompasses the bond critical point (the found to be opposed to the ligands rather than adjacent to them
inter_sectjon of the bond path and interatomic surface) for the axial i the manner of a bonding CC. In the caselLéf) they are
fluorine in (a). called ligand opposed charge concentrati#ns.
i In CrOsF,, for example, bothL(r) and ELF exhibit four
for example, are 2.3 and 1.9 au in ELF but 1.4 and 1.3, and 1.3 y55ima in the region of the outer shell of the Cr atom in an
and 1.2 inL(r) and LJF, respectively. In hydrides such assCH — g55-65imate tetrahedral arrangement, and the negatively charged
NHs, H>0, and HCI, the bonded maxima in ELF occur only at |i5ands are found not at the vertices of the tetrahedron but in
the positions of the protons. While such maxima are also found ¢ toyr faces where the electronic charge is maximally depleted.
in L(r) and LJF, both these functions exhibit bonded and The maxima opposed to the oxygen atoms are larger than those
nonbonded maxima within the VSCC of the A atom. opposed to the fluorine atoms, thereby causing theCFF

LJF for Five and Six Electron Pairs. The CIF; and Clks angle to be greater than the-@r—O angle, contrary to what
molecules possess five and six valence electron pairs, respecwould be anticipated if the maxima behaved as bonding maxima.
tively. The displays of LJF in Figure 8 show the two regions The VHs molecule has a square pyramidal rather than the
of localization of nonbonding same-spin density on the Cl atom trigonal bipyramidal structure anticipated on the basis of the
in CIF; and the single such region in Glfhat are obtained  VSEPR model. The ligands instead occupy positions in each
when e* is placed at a €IF bond critical point. The associated of the faces of the square pyramidal structure defined by the
maxima, withX(r,r1) values of 97%, occur at approximately five maxima in eitherL(r) or ELF, thereby enabling the
the same distance from the Cl nucleus, 1.1 au, as they do innegatively charged ligands to avoid the charge concentrations
L(r). Unlike L(r), LJF does not exhibit bonding maxima in  as in CrQF,.
the VSCC of the Cl atom, but instead localizes the same-spin  The Lennard-Jones function exhibits the same number and
density within the basin of each F atom. Lik€r), however,  arrangement of maxima for both molecules. In Figure 9a, e*
the localization that is present is more pronounced for the uniqueijs placed at a CC it.(r) opposedd a F in CrQF,, and the
F atom in both molecules, as evidenced by the 0.2 au COﬂtOUI’map shows a same-spin maximum opposed to each of the
in the region of the bond critical points in the map for €IF oxygen atoms. In Figure 9b, e*is p|aced ata CC Opposed to
LJF also exhibits the same patterns of nonbonding chargean oxygen, and the map shows the maximum opposed to each
localizations within the basins of the F atoms as do@$. of the fluorine atoms. In each case the third ligand opposed

LJF for Transition Metal Molecules. The topologies of maximum is present in the plane containing e*. The maxima
both L(r) and ELF demonstrate that the pattern of electron exhibit the same characteristics as those found.(i): the
localization found in transition metal molecules differs from maxima opposed to the oxygens are larger than those opposing
that found in main group elements in two principal wa$3 the fluorines; the angle subtended at Cr by the maxima opposed
The first is that in the transition metal molecules the maxima to the fluorines is larger than that formed by those opposed to
in L(r) and ELF resulting from the interaction with the ligands the oxygens, 120compared to 100for both fields; both sets
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of maxima are the same distance from the Cr nucleus, 0.60 authese functions is empirically determined by the topology of
for LJF and 0.67 au fok(r). LJF for the VH molecule also the Laplacian of the one-electron density.

exhibits the same form as that found tdr) and ELF, Figure One may begin to understand how information regarding the
9c,d, with the five same-spin maxima defined by LJF forming pair density is transmitted to the one-electron density in terms
a square-based pyramid with its vertices opposed to the ligandsof the behavior of LJF. In the case of Rfér example, placing
The degree of exclusion approaches 100% at the maxima ine* on a proton causes the Fermi hole to be strongly localized

both molecules. within the basin of the hydrogen atom, thereby leading to the
formation of a nonbonding maximum in the same-spin density
Discussion on the phosphorus atom with a percent exclusion in excess of

99%. Thus the conditional pair density in the nonbonded region

For a given position of e*, the maxima portrayed in the reduces to the one-electron density, as shown in Figure 3f, and
Lennard-Jones function denote the most probable positions ofit is this density that yields the nonbonding charge concentration
the density of the remaining same-spin electrons, as determinedn the VSCC of the.(r) distribution for the phosphorus atom.
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