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Lennard-Jones was among the earliest to stress the dominant role played by the exclusion principle in chemistry
and was the first to exploit the properties of the same-spin pair density to demonstrate the most probable
spatial distribution of a given number of electron pairs. This paper demonstrates that a related distribution
function, the conditional probability for same-spin electrons, is so successful in recovering the geometrical
models associated with differing numbers of electron pairs, as suggested by the work of Lennard-Jones and
subsequently adopted as the basis for the VSEPR model, that we propose that it be called the Lennard-Jones
function, or LJF. The maxima in LJF show where the density of the other electrons is most likely to be
found, relative to a fixed position of a same-spin reference electron. The digonal, trigonal, tetrahedral,
bipyramidal, and octahedral patterns of maxima obtained in such displays demonstrate that these are the
most probable arrangements for corresponding numbers of electron pairs. LJF provides a quantitative measure
of the extent of exclusion of the density of one electron from that of another of the same spin. There is a
remarkable similarity in the patterns of spatial pairing exhibited by LJF andL(r ) ) -∇2F(r ), and the manner
in which the two-electron correlation contained in LJF is transmitted to the density and hence toL(r ) is
accounted for.

Lennard-Jones and the Electron Pair

In an address to the British Association for the Advancement
of Science in 1954 Lennard-Jones stated:1

“Electrons of like spin tend to avoid each other. This effect
is more powerful, much more powerful than that of electrostatic
forces. It does more to determine the properties and shapes of
molecules than any other single factor. It is the exclusion
principle which plays the dominant role in chemistry. Its all-
pervading influence does not seem to have been fully realized
by chemists, but it is safe to say that ultimately it will be
regarded as the most important property to be learned by those
concerned with molecular structure.”
These remarks followed a number of investigations by

Lennard-Jones wherein he demonstrated that the operation of
the Pauli exclusion principle keeps electrons of like spin
maximally separated, independent of their electrostatic interac-
tions. He and Pople showed, using simple approximations to
the orbitals in atoms and some molecules, that the most probable
interelectronic angle equaled 180° for two electrons, equaled
120° for three, and assumed the tetrahedral value for four
electrons.2-4

Within the orbital model, the requirement of the Pauli
exclusion principle that the wave function be antisymmetric with
respect to the interchange of any pair of electrons is met by
limiting the population of a given space orbital to two electrons
of opposite spin. This simple consequence of antisymmetry
within the orbital model tends to obscure the more fundamental
nature of the exclusion principle. The work of Lennard-Jones
focused attention on the consequences of the antisymmetry
requirement beyond the orbital model. He did this in two
ways: by demonstrating, as had others,5-7 that the corresponding
many-electron wave function attains a maximum value for

particular relative arrangements of a given number of same-
spin electrons1 and by evaluating the probability distribution
function for two same-spin electrons.2-4

The first method attempts to give the relative positions of all
the electrons simultaneously, which places the results in a
nonphysical many-dimensional space. One may, as Lennard-
Jones did in this approach, fix the positions of all electrons but
one and then search for the position of the remaining electron
that maximizes the value of the wave function. One of the
authors (R.J.G.) used such descriptions of the most probable
relative positions of the electrons in establishing the set of rules
underlying the VSEPR model of molecular geometry.8-10

The second method makes use of the fact that it unnecessary
to know the relative coordinates of all the electrons simulta-
neously to determine the properties of a molecule. Instead, it
is sufficient to know the relative probability of two electrons
being in prescribed positions, information given by the two-
electron density distribution, also known as the pair density.
Its integration over the coordinates of the two electrons, that
is, over the space of each electron, yields the total number of
electron pairs, just as integration of the one-electron density
yields the total number of electrons. By fixing the coordinates
of one electron of given spin, the so-called reference electron,
one can obtain a map in the real space of the second electron,
which can be of either spin, that indicates its most likely position
relative to that of the reference electron. Lennard-Jones’
arguments are based on the two-electron density for same-spin
electrons which he termed thespace-correlation function. While
he had to approximate the orbitals appearing in the space-
correlation function in terms of linear combinations of simple
Slater atomic-like functions, he was still able to determine the
principal angular form of the relative distribution function for
a given number of same-spin electrons.
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Isolating the Exclusion Effect in Terms of the Fermi Hole

Later investigations of the pair density introduced and focused
on the concept of the Fermi hole, that part of the two-electron
distribution function that isolates the effect of the exclusion
principle on the spatial correlation of same-spin electrons.11-13

The density of the Fermi hole for a fixed position of a reference
electron determines the extent to which the density of another
same-spin electron is excluded from its neighborhood. This
function integrates to minus one electron, and the Fermi-hole
density thus describes how the density of the reference electron
is spread out in space, thereby excluding an equivalent amount
of same-spin density. With this interpretation, it is clear that if
the density of the Fermi hole is spatially localized, then so is
the reference electron.13

The Fermi hole correlates only the motions of same-spin
electrons. In the field of a central nucleus it is the existence of
the potential wells created by the presence of the ligands that
leads to the formation ofRâ electron pairs by the trapping of
the localized Fermi holes in the potential wells of the ligands.
Since only electrons of like spin are excluded from a localized
Fermi hole, then, in a closed-shell molecule, the spatial
localization of anR spin electron implies the equivalent
localization of another ofâ spin and the result is the formation
of a localized pair. From this point of view, the minimum
energy molecular geometry should be obtained when the spatial
arrangement of the potential wells determined by the relative
orientation of the ligands is coincident with the most probable
arrangement of the localized Fermi holes.
A review14 of how the properties of the Fermi-hole density

can be used to determine the extent of the spatial pairing of
electrons and of how this localization is reflected in the
topologies of the laplacian of the electron density15 and of the
electron localization function of Becke and Edgecombe16 has
appeared recently. The paper relates the properties of these two
functions to a quantity termed the conditional probability, the
probability of finding an electron of given spin at positionr2,
conditional upon the same-spin reference electron being atr1.
The form of this function was discussed and illustrated in terms
of its two contributing densities, theR spin density at position
r2, FR(r2), and the density of the Fermi hole,hR(r1,r2), whose
definition in terms of the Hartree-Fock orbitals is given in refs
13 and 14. The latter density is a negative quantity correspond-
ing to the decrease in the value of the same-spin density atr2
because of the spreading out of the density of the reference
electron with coordinater1.
In this paper we show that the spatial distribution of the

electron pairs suggested by Lennard-Jones’ studies of the space-
correlation function4 can be recovered in terms of the properties
of the conditional probability. Indeed so successful is the
conditional probability in recovering the geometrical models
associated with differing numbers of electron pairs as suggested
by the work of Lennard-Jones and subsequently adopted as the
basis of the VSEPR model8,9 that we suggest the conditional
probability for same-spin electrons be called the Lennard-Jones
function, or LJF.

The Lennard-Jones Function

The conditional probability can be defined at any level of
theory that includes antisymmetrization of the wave function.
The effect of antisymmetrization is so pronounced and the
resulting correlation of the motions of same-spin electrons so
strong that even the simplest of these theories, the Hartree-
Fock single-determinant model, provides an excellent description
of the density of the Fermi hole and the associated exclusion

effects.17 In this orbital product model, each electron moves
in the average field of the remaining electrons, and hence there
is no correlation of the motions of electrons of different spin.
However, the orbital exchange introduced by the antisymme-
trization of the product function results in the correlation of
same-spin electrons, often called exchange correlation. Intro-
ducing the so-called Coulomb correlation between the electrons
by proceeding beyond the Hartree-Fock approximation has only
minor effects on the density of the Fermi hole. Thus the
Hartree-Fock wave function, since it correlates only same-spin
electrons, is ideal for illustrating the effects of the exclusion
principle.
Since the Hartree-Fock pair density for electrons of different

spin is uncorrelated, theRâ pair density is given simply by the
product of theR- andâ-spin densities multiplied by one-half
so as not to count the same pair twice,

with a corresponding expression for theâR pair density.
Because of the presence of the exchange correlation for same-
spin electrons however, the same-spinR density atr2, FR(r2),
is reduced in value by the density of the Fermi hole, and the
RR two-electron density, the space-correlation function of
Lennard-Jones,4 is given by

The term in curly brackets isthe conditional probability,
δR(r2,r1), or LJF. It is the difference betweenFR(r2), the spin
density atr2, and the magnitude of the Fermi-hole density atr2
for a given positionr1 of the reference electron. Thus the space-
correlation function is given by (1/2)FR(r1) δR(r2,r1).
The conditional probabilityδR(r2,r1) is, therefore,a measure

of the amount of same-spin density not excluded from the
positionr2 by the spreading out of the density of the reference
electron atr1. Clearly, the maxima in a plot ofδR(r2,r1) for a
fixed position of the reference electron will show where the
density of the remaining same-spin electrons is most likely to
be found.
The Fermi-hole density equals the spin density whenr1 )

r2, thereby totally excluding all other same-spin density from
the position of the reference electron. Consequently whenr1
) r2, δR(r1,r1) ) 0. The integral ofδR(r2,r1) over the space of
the second electron equalsNR - 1. That is,δR(r2,r1) describes
the spatial disposition of the remaining same-spin electrons for
a given position of the reference electron. A program has been
written to locate and characterize the critical points in LJF. In
this situation,δR(r2,r1) is expressed as a function ofr2 for a
fixed position of the reference electronr1 and a critical point
corresponds to the vanishing of the gradient ofδR(r2,r1) with
respect to the coordinater2. Of primary interest are the number
and location of the local maxima in LJF, critical points in
δR(r2,r1) where all three curvatures are negative. LJF attains
its maximum value at a point where the density of the Fermi
hole vanishes, the value of LJF then equaling the spin density
FR(r2), eq 2. Thus the ratioδR(r2,r1)/FR(r2) is a measure of the
degree of exclusion of the density of the reference electron with
coordinater1 from the pointr2, and when multiplied by 100%,
it yields a percentage measure of the effect of the Pauli exclusion
principle. This ratio, denoted byX(r2,r1), is the percent
exclusionof the density of the reference electron from the point
r2.
From eq 2, the decrease in the same-spin pair density for a

given r1 and r2 is determined by the productFR(r1)hR(r1,r2),

FRâ(r1,r2) ) (1/2)FR(r1)F
â(r2) (1)

FRR(r1,r2) ) (1/2)FR(r1){FR(r2) + hR(r1,r2)} (2)
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which equals the Hartree-Fock exchange density. The total
number of same-spin electrons excluded from a region of space
Ω, a quantity denoted byFRR(Ω,Ω), is obtained by the
corresponding integration of this product over the coordi-
nates of both electrons.13 The limiting value ofFRR(Ω,Ω) is
-NR(Ω), the spin population of regionΩ. Thus the ratio
|FRR(Ω,Ω)|/NR(Ω) is a measure of the degree of localization of
theR electrons inΩ, because when this ratio equals unity, it
implies that the Fermi density for the electrons inΩ is totally
contained inΩ, thereby excluding all other same-spin electrons
from Ω. In this unattainable but approachable limit, there is
no exchange of the electrons insideΩ with those outside ofΩ,
and they form two separately localized sets. When multiplied
by 100%, this ratio yieldsl(Ω), the percentlocalizationof the
electrons inΩ.13

The populations and Fermi correlations reported here are for
atoms, regions of space bounded by surfaces of local zero flux
in ∇F.18 Atoms and their properties are defined by the quantum
action principle and consequently are proper open systems.19

All properties of such open systems are additive to yield the
molecular values. The properties predicted in this manner
recover the experimentally determined contributions to the
volume, energy, polarizability, and magnetic susceptibility in
those cases where the results give evidence of atomic or group
contributions that are transferable,20 in addition to being additive.
The wave functions were calculated using GAUSSIAN 94 with
the 6-311++G(2d,2p) basis set.21 All of the critical points in
LJF discussed in the paper have been located and characterized.
The electrons in the core orbitals are omitted from the

calculations of LJF. These electrons are strongly localized13,14

and the full spin density of the core appears in the displays of
LJF for any position of the reference electron removed from
the core region. Since the outer density of a core extends into
the valence region, the associated contours obscure the behavior
of the valence electrons of the central atom. This is illustrated
and discussed below in the case of PH3.
In what follows we demonstrate that the conditional prob-

ability δR(r2,r1) or Lennard-Jones function establishes the most
favored patterns of electron localization for two, three, four,
five, and six pairs of electrons, patterns that are in full accord
with the patterns of electron domains assumed in the VSEPR
model.9 It is also found that the localization patterns defined
by LJF can be mapped to a remarkable degree onto the maxima
in the negative of the Laplacian of the electron density, the
quantity L(r ) ) -∇2F(r ), found in the valence shell charge
concentration VSCC of an atom. The maxima inL(r ) determine
the positions within a molecule where the electronic charge is
maximally concentrated. The number, angular distribution, and
relative size of these charge concentrations CCs have been
shown to recover the properties of the electron domains of the
VSEPR model.15

LJF for Two and Three Electron Pairs. The molecules
BeH2 and BH3 contain respectively two and three pairs of
valence electrons, the valence density being found largely within
the basins of the hydrogen atoms. The net charges on the
hydrogen atoms, as determined by the integration of the density
over the atomic basins,20 are-0.87e and-0.70e, respectively.
In Figure 1a the reference electron, hereafter referred to as

e*, is situated at the position of one of the protons in BeH2,
and the LJF plot shows that the density of the second same-
spin electron is strongly localized within the basin of the second
hydrogen atom. The small amount of spin density appearing
in the basin of the beryllium atom is from the valence orbitals
that extend into its core region. Alternatively, one can interpret

the same diagram as showing that nearly all the density of the
second same-spin electron is excluded from the basin of the
atom containing e*. Correspondingly, the percent exclusion
X(r2,r1) equals 99% at the maximum in the basin of the second
hydrogen. WhenX(r2,r1) ) 100%, the pair density reduces to
oneR,â pair atr1 and another atr2. While LJF always equals
zero at the position of e*, the essentially complete removal of
all other same-spin density from the basin containing e*
indicates that the Fermi-hole densityhR(r1,r2) equals-FR(r2)
over the entire basin and the Fermi hole is localized.
This localization is little changed for motion of e* within

the basin of the first proton. Thus as illustrated in Figure 1b,
even when e* is placed at the Be-H bond critical point, that
is, on the boundary separating the two atoms, only a small
amount of same-spin density appears in the basin of the
reference atom andX(r2,r1) at the maximum in LJF remains
equal to 99%. Since the same behavior is obtained for the
electrons of either spin, the valence pair density for this molecule
is well represented by two pairs of electrons, each pair localized
within the basin of a hydrogen atom. When the reference
electron is placed at the position of the beryllium nucleus, Figure
1c, the density of the second same-spin electron is equally
delocalized over the basins of both hydrogen atoms. In this
case, bothR electrons contribute equally to both hydrogen atom
basins, a situation corresponding to the maximum delocalization
of the valence electrons, andX(r2,r1) decreases to 56% at both
maxima. However, since the valence density lies primarily

Figure 1. Contour maps of the Lennard-Jones function LJF for BeH2

and BH3. The boundaries of the atomic basins and the bond paths are
shown on each map. The position of the reference electron is denoted
by a star and is referred to as e*. LJF equals zero at the position of e*.
The contours increase in value from this point and inward from the
exterior of the molecule, starting at 0.001 au and then in steps of 2×
10n, 4 × 10n, and 8× 10n with n beginning at-3 and increasing in
steps of unity. (a) e* is at the position of a proton in BeH2, and LJF is
essentially zero over the associated basin. (b) e* is moved to the Be-H
bond critical point, and the second same-spin electron remains almost
totally excluded from the starred basin. (c) e* is at the Be nucleus. (d)
e* is at a proton in BH3. (e) e* is at a B-H bond critical point.
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within the basins of the hydrogen atoms, this pattern of
delocalization contributes little to the total pair density.
Similar results are obtained for the BH3 molecule. Figures

1d and 1e show the localization of the density of the two same-
spin electrons in the basins of two of the hydrogen atoms when
e* is placed within the basin of the third hydrogen atom or on
its boundary. As in BeH2, the same-spin density is delocalized
over the basins of all three hydrogen atoms when e* is placed
at the position of the boron nucleus, the value ofX(r2,r1) at the
maxima decreasing from 99% to 74% when e* is moved from
a proton to the boron nucleus. These results are in accord with
previous studies of the localization of the Fermi correlation in
these molecules which show that they are well described by a
localized pair on the core of the metal atom and a valence pair
localized on each of the hydrogens.13 The electrons of either
spin are 90% localized within the basins of the hydrogen atoms
in BeH2 and 77% in BH3, as measured byl(Ω).
The maps in Figure 1 show a coincidence of the localized

Fermi holes and the positions of the potential wells within the
basins of the hydrogen atoms, as anticipated for equilibrium
geometries. They do not, however, separate the effect of
correlation from the electrostatic effect associated with the
potential wells. The operation of the two effects separately from
one another can be illustrated in two ways.
Figure 2a shows LJF for BeH- with e* at the proton. The

map is essentially the same as Figure 1a for BeH2. It
demonstrates that the second same-spin electron is excluded
from the basin containing e* and is maximally separated from
it by the Fermi correlation, even in the absence of a second
proton. The LJF density is, however, more diffuse since its

maximum, for whichX(r2,r1) ) 92%, is created in the absence
of a proton. The electrons within the basin of the hydrogen
atom are only slightly less localized than in BeH2, with l(H) )
93%.
Figure 2b shows that upon bending the BeH2 molecule with

e* positioned at a proton, the density of the second electron
lags behind the motion of the proton and it spreads into the
basin of the beryllium atom, as well as into the basin of the
hydrogen containing e*. While the value ofX(r2,r1) remains
essentially unchanged at the maxima in LJF, there is a
pronounced decrease in the degree of localization of the
electrons within the basins of each hydrogen atom, the values
decreasing to 86% for bent (90°) BeH2 and to 74% for pyramidal
(109.5°) BH3, Figure 2c. Thus when the Fermi hole is displaced
by a change in geometry, it becomes less localized. The
minimum energy geometries in these two molecules are obtained
when the Fermi holes are maximally localized within the ligand
potential wells.
The spatial displays of electron localization depicted by LJF

in these two molecules are of the same form and possess the
same number and location of maxima as exhibited in maps of
L(r). In fact, placing e* at the position of a charge concentration
(CC) in the Laplacian yields, in general, the most localized
associated LJF description, and this procedure is used in many
of the plots that follow.
LJF for Four Electron Pairs. The maps for PH3, Figure 3,

illustrate a number of the general features of LJF. Placing e*
at the position of the nonbonding CC inL(r ), Figure 3a, leads
to the exclusion of same-spin density from the region associated
with the lone pair within the basin of the phosphorus atom and
to its accumulation within each of the hydrogen atomic basins,
with maxima located at the protons, as they are inL(r ).
Similarly, placing e* at the position of a proton, that is, at a
bonded maximum inL(r ), Figure 3b,c, leads to the exclusion
of all same-spin density from its vicinity and to its localization
at the position of the lone pair within the phosphorus atomic
basin and within the basins of the remaining two hydrogen
atoms. Clearly, this tetrahedral-like pattern of electron localiza-
tion which includes the lone pair region and displayed in Figure
6, is not driven simply by the positioning of the three potential
wells of the protons.
These maps are insensitive to where e* is placed between

the nuclei along a P-H axis or where on the nonbonded side
of the phosphorus atom on the 3-fold symmetry axis, the values
of X(r2,r1) varying from 97 to 100%. Moving e* to a position
on the 3-fold axis on the bonded side of the phosphorus atom,
however, causes a significant decrease in the localization of LJF,
with spin density appearing in all four tetrahedral regions, Figure
3d, and the value ofX(r2,r1) decreasing to 72% at the maxima
in each of the hydrogen basins.
Figures 3e and 3f show LJF for PH3 obtained with the core

orbitals retained in the calculation. In these maps e* is placed
at the position of a proton, and each map is to be compared
with its corresponding map with the core excluded, maps 3b
and 3c. The purely valence contours, those up to 0.02 au, are
superimposable for each pair of maps. The maximum at the
position of a proton is unchanged, but the maximum associated
with the nonbonding electron in the VSCC of phosphorus is
now contiguous with the spin density of the core and is present
as a shoulder in the total display. Map 3f is in fact superim-
posable on a map of theR spin density, contour for contour, in
the nonbonding region along the 3-fold axis, as well as over
the whole of the core. This implies that the density of e* is
totally excluded from the nonbonded and core regions, and the

Figure 2. Contour maps of LJF. (a) e* is at the proton in BeH- (to be
compared with 1a). (b) e* is at a proton in 90° bent BeH2. (c) e* is on
an out-of-plane proton in pyramidal BH3. Two extra contours of value
0.025 and 0.30 au are present to indicate the small maxima formed
along the 3-fold axis above and below the B nucleus.
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sum of the LJ functions for both theR and â electrons will
equal the total density of the molecule in the nonbonded region
and the core. Clearly, the accumulation of nonbonding spin
density would be revealed in a plot of the Laplacian of LJF,
since it would be identical to the Laplacian of the density,L(r ).
Placing e* at the position of a proton in the H2S molecule

leads to the localization of the same-spin density in the two
lone pair regions and within the basin of the second hydrogen
atom, Figure 4a,b. Placing e* at the position of a nonbonding
CC inL(r ) localizes the same-spin density in the basin of each
hydrogen and in the second lone pair region, Figure 4c,d,
respectively. The values ofX(r2,r1) at the corresponding
maxima in LJF are all in excess of 99%, and the patterns of
localization are again insensitive to the precise location of e*
along the respective bonded or nonbonded axes.

The extent of localization of the same-spin density is
decreased when PH3 is made planar or when H2S is made linear,
causing the percent localizations of the spin density within the
basins of the hydrogen atoms to decrease from 65 to 61% in
PH3 and from 48 to 30% in H2S and the values ofX(r2,r1) at
the maxima in the hydrogen basins to decrease to 93 and 83%,
respectively. These effects are evident in the maps shown in
Figure 5. In planar PH3, with e* at the position of a proton,
the nonbonded same-spin density is split into two less localized
regions, one on each side of the symmetry plane, and its
maximum value> 0.065 attained in the equilibrium geometry
is reduced to a value< 0.060 au. In linear H2S the localization
of same-spin density in the bonding region is greatly reduced,
and the region becomes contiguous with a torus of nonbonding
same-spin density within the basin for the sulfur atom that is
less pronounced and less localized than the two corresponding
separately localized domains in the bent molecule. The most
stable geometries of these two molecules with four valence
electron pairs maximize the coincidence of the potential wells
of the two protons in H2S and of the three protons in PH3 with
the tetrahedral pattern of localization of same-spin density
exhibited by LJF. Making the geometries planar or linear
destroys the tetrahedral pattern of maximum mutual exclusion
of the same spin-density and reduces its degree of localization
into separate spatial regions.
The LJ function exhibits similar tetrahedral patterns of same-

spin localization in the equilibrium geometries of CH4, NH3,
and H2O, the only difference being that in these cases where
the central atom is more electronegative than its third-row
counterpart the bonding spin density associated with a given
proton exhibits a maximum at a position along the bond path
within the basin of the A atom, as well as at the position of the
proton. This same behavior is exhibited byL(r ) where both
bonding and nonbonding CCs occur within the VSCC of the A
atom, in addition to the maxima inL(r ) found at the positions
of the protons. The values ofX(r1,r2) at the maxima in NH3
and H2O are in excess of 99%, and as with PH3 and H2S, these

Figure 3. Contour maps of LJF for PH3 with the added contours 0.05,
0.06, and 0.065 au. (a) e* is at the position of the nonbonding CC in
L(r ), and maxima in the same-spin density appear on each of the
protons. The projected positions of out-of plane nuclei are indicated
by an open cross. The apparent maximum lying between the two out-
of-plane protons in (a) and (b) is only two-dimensional. It is a (3,-1)
critical point linking the two associated out-of-plane maxima. (b) e* is
at a proton, and maxima appear at the position of the nonbonding CC
on phosphorus (inner contour value of 0.065 au) and at the positions
of the two out-of-plane protons, as indicated by the presence of the
(3,-1) critical point. (c) e* is on an out-of-plane proton, and maxima
are found in the nonbonding region and on the two remaining protons.
(d) e* is on the 3-fold axis opposite the nonbonded maximum. Same-
spin density appears in all four tetrahedral positions, showing that the
density of the reference electron is delocalized over all four regions.
The maxima are consequently decreased in extent and value. Maps (e)
and (f) include the core density, and e* is on a proton, out-of-plane in
(f). Each map is superimposable with its counterpart with the core
excluded, (b) and (c) respectively, up to the outer contour of the
nonbonding maximum.

Figure 4. Contour maps of LJF for H2S with added contours 0.085,
0.090, and 0.10 au. (a) e* is on an out-of-plane proton, showing the
two nonbonding maxima with inner contour equal to 0.09 au. (b) e* is
on a proton in plane with the nuclei with inner contour on bonding
maximum equal to 0.1 au. Out-of-plane nonbonding maxima are also
present, as indicated by the intervening pseudomaximum of a (3,-1)
critical point. (c) e* is on an out-of-plane nonbonding CC ofL(r ). (d)
e* is on nonbonding CC, showing exclusion of same-spin density from
one such region and its accumulation in the other.
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values andl(H), the localization of the electrons on the hydrogen
atoms, decrease when they assume planar and linear geometries,

respectively. As well as the number and relative location of
the maxima exhibited by LJF andL(r ) being the same, the
distances of the maxima from the A nucleus are very similar in
both distributions. A maximum in LJF occurs approximately
0.1-0.2 au closer to the A nucleus than the corresponding CC
in L(r ),14 the small differences being most likely due to the
omission of the core density from the LJF calculations. The
angular distribution of the CCs ofL(r ) in the VSCC of A and
the corresponding maxima in LJF are the same to the accuracy
of the LJF plots. In H2O and H2S these angles subtended at
the A nucleus are 128° and 121°, respectively.
The Lennard-Jones function emulatesL(r ) in the ethane

molecule, exhibiting a total of four bonding maxima in the
VSCC of each carbon atom for placement of e* at the position
of a C-H or C-C bonding CC inL(r ), Figure 7a,b. Thus,
like L(r ), the electron pair associated with the C-C bond is
represented by two maxima, one in the VSCC of each carbon.
The LJ function enables one to demonstrate that these two
maxima represent a single pair of electrons. Locating e* at the
position of one such bonding CC results in the removal of both
C-C same-spin maxima, with only the six C-H maxima
remaining. The value ofX(r2,r1) is in excess of 99% at all of
these maxima.
The topology of ELF was first studied by Silvi and Savin.22

While the pattern of localization determined by ELF exhibits a
general homeomorphism with that ofL(r ), the maxima in ELF
generally occur at considerably greater distances from the A
nucleus than are found inL(r ) and in LJF.14 The respective
values of the radii of the nonbonded maxima in PH3 and H2S,

Figure 5. Contour maps of LJF for planar PH3 and linear H2S with
the same added contours as in Figures 3 and 4, respectively. (a) e* is
on a proton in plane with P and H nuclei. (b) e* is on a proton, showing
bifurcation of nonbonding same-spin density on P. (c) e* is on a proton
in linear H2S.

Figure 6. Envelope maps of LJF for PH3. In (a), e* is at the position
of the nonbonding maximum, and the same-spin density is localized
on the three protons, envelope value) 0.15 au. In (b) e* is at the
position of a proton, and same-spin density is localized on the remaining
two protons and in the nonbonding region, envelope value) 0.06 au.
Same-spin density is localized within the phosphorus core in both cases.

Figure 7. Contour maps of LJF for ethane with added contours 0.10,
0.13, and 0.17 au. (a) e* is on a C-H bonding CC in VSCC of a
carbon, showing two C-C bonding same-spin maxima and one of the
C-H bonding maxima. (b) e* is on a bonding CC directed at another
carbon, which results in the loss of both C-C same-spin maxima.
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for example, are 2.3 and 1.9 au in ELF but 1.4 and 1.3, and 1.3
and 1.2 inL(r ) and LJF, respectively. In hydrides such as CH4,
NH3, H2O, and HCl, the bonded maxima in ELF occur only at
the positions of the protons. While such maxima are also found
in L(r ) and LJF, both these functions exhibit bonded and
nonbonded maxima within the VSCC of the A atom.
LJF for Five and Six Electron Pairs. The ClF3 and ClF5

molecules possess five and six valence electron pairs, respec-
tively. The displays of LJF in Figure 8 show the two regions
of localization of nonbonding same-spin density on the Cl atom
in ClF3 and the single such region in ClF5 that are obtained
when e* is placed at a Cl-F bond critical point. The associated
maxima, withX(r2,r1) values of 97%, occur at approximately
the same distance from the Cl nucleus, 1.1 au, as they do in
L(r ). Unlike L(r ), LJF does not exhibit bonding maxima in
the VSCC of the Cl atom, but instead localizes the same-spin
density within the basin of each F atom. LikeL(r ), however,
the localization that is present is more pronounced for the unique
F atom in both molecules, as evidenced by the 0.2 au contour
in the region of the bond critical points in the map for ClF5.
LJF also exhibits the same patterns of nonbonding charge
localizations within the basins of the F atoms as doesL(r ).
LJF for Transition Metal Molecules. The topologies of

both L(r ) and ELF demonstrate that the pattern of electron
localization found in transition metal molecules differs from
that found in main group elements in two principal ways.14,23

The first is that in the transition metal molecules the maxima
in L(r ) and ELF resulting from the interaction with the ligands

occur in the outer shell of the core of the metal atom, rather
than in its valence shell, the shell structure being defined by
either L(r ) or ELF.24 The outer core orbitals, 3s23p6, are
included in the calculations of LJF for the transition metal
molecules. The second is that these maxima are in general
found to be opposed to the ligands rather than adjacent to them
in the manner of a bonding CC. In the case ofL(r ) they are
called ligand opposed charge concentrations.23

In CrO2F2, for example, bothL(r ) and ELF exhibit four
maxima in the region of the outer shell of the Cr atom in an
approximate tetrahedral arrangement, and the negatively charged
ligands are found not at the vertices of the tetrahedron but in
the four faces where the electronic charge is maximally depleted.
The maxima opposed to the oxygen atoms are larger than those
opposed to the fluorine atoms, thereby causing the F-Cr-F
angle to be greater than the O-Cr-O angle, contrary to what
would be anticipated if the maxima behaved as bonding maxima.
The VH5 molecule has a square pyramidal rather than the
trigonal bipyramidal structure anticipated on the basis of the
VSEPR model. The ligands instead occupy positions in each
of the faces of the square pyramidal structure defined by the
five maxima in eitherL(r ) or ELF, thereby enabling the
negatively charged ligands to avoid the charge concentrations
as in CrO2F2.
The Lennard-Jones function exhibits the same number and

arrangement of maxima for both molecules. In Figure 9a, e*
is placed at a CC inL(r ) opposed to a F in CrO2F2, and the
map shows a same-spin maximum opposed to each of the
oxygen atoms. In Figure 9b, e* is placed at a CC opposed to
an oxygen, and the map shows the maximum opposed to each
of the fluorine atoms. In each case the third ligand opposed
maximum is present in the plane containing e*. The maxima
exhibit the same characteristics as those found inL(r ): the
maxima opposed to the oxygens are larger than those opposing
the fluorines; the angle subtended at Cr by the maxima opposed
to the fluorines is larger than that formed by those opposed to
the oxygens, 120° compared to 100° for both fields; both sets

Figure 8. Contour maps of LJF for ClF5 in (a) and ClF3 in (b) with
added contours 0.12, 0.15, and 0.17 au. e* is on an out-of-plane Cl-F
bond critical point in both (a) and (b), equatorial in (a) and axial in
(b). The 0.2 au contour encompasses the bond critical point (the
intersection of the bond path and interatomic surface) for the axial
fluorine in (a).

Figure 9. Contour maps of LJF for CrO2F2 and VH5 with added
contours 0.90, 0.95, and 1.00 au. (a) e* is on a CC ofL(r ) opposed to
a fluorine, showing the same-spin maxima opposed to the oxygens.
(b) e* is on a CC ofL(r ) opposed to an oxygen, showing the two
same-spin maxima opposed to the fluorines. (c) e* is on a CC ofL(r )
opposed to apical proton, showing same-spin maxima opposed to basal
protons. (d) e* is on a CC ofL(r ) opposed to a basal proton, showing
the maxima in same-spin density opposed to the apical and a basal
protons.
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of maxima are the same distance from the Cr nucleus, 0.60 au
for LJF and 0.67 au forL(r ). LJF for the VH5 molecule also
exhibits the same form as that found forL(r ) and ELF, Figure
9c,d, with the five same-spin maxima defined by LJF forming
a square-based pyramid with its vertices opposed to the ligands.
The degree of exclusion approaches 100% at the maxima in
both molecules.

Discussion

For a given position of e*, the maxima portrayed in the
Lennard-Jones function denote the most probable positions of
the density of the remaining same-spin electrons, as determined
by the Pauli exclusion principle. The patterns of electron
localization denoted by these maxima yield the most probable
arrangements of two, three, four, five, and six electron pairs
anticipated in the VSEPR model of molecular geometry.
Mayer25 has recently argued that the “driving force” behind the
VSEPR rules is a consequence of the orthogonality constraints
acting on a set of simple hybrid orbitals centered on the central
atom. These constraints, however, have meaning only within
the orbital model and are themselves but a consequence of the
exclusion principle applied to this model.
The localization determined by LJF appears most pronounced

for those hydrides in which the hydrogens bear negative charges,
and one has spatial localization of the total density as well as
of the pair density. In these molecules there is a one-to-one
correspondence between the number of maxima in LJF and the
assumed number of localized electron pairs, a pattern that is
maximized when it coincides with the positions of the potential
wells of the ligands that minimize the energy. In the more
covalent hydrides, LJF exhibits two maxima for each anticipated
bonding electron of given spin, one on the proton and another
within the basin of the central atom. A similarly related pair
of same-spin maxima is also found for the C-C bonded pair in
ethane.
The maxima in the same-spin density of LJF faithfully recover

the number and properties of the nonbonding CCs ofL(r ) found
within the VSCC of the central atom in all the molecules studied.
The maxima in LJF also recover the pattern and properties of
the CCs ofL(r ) present in the outer shell of the core of the
metal atom in a transition metal molecule.
The pairing of electrons is a consequence of the spatial

localization of an electron of given spin, as determined by a
corresponding localization of its Fermi hole.13 The maxima in
the Lennard-Jones function indicate the number and relative
positions of the spatial regions where the same-spin density is
localized, as a consequence of the localization of the Fermi-
hole density of e*. The most probable of these localization
patterns for a given number of same-spin electrons agrees with
the empirically determined pattern of the bonding and non-
bonding CCs found in the Laplacian of the electron density or
by the maxima in ELF.16 The latter function is determined by
a quantity∆, the difference between the many- and one-electron
kinetic energy densities.26 A vanishing∆ implies a vanishing
of the same-spin conditional pair density and the factors causing
∆ to vanish are the same as those required for the localization
of the density of the Fermi hole.14,26 Thus ELF reflects the
properties of the conditional pair density, that is, of the Lennard-
Jones function. LJF requires the pair density for its evaluation,
while ELF requires the one-electron density matrix; yet the
information regarding the pairing of electrons yielded by both

these functions is empirically determined by the topology of
the Laplacian of the one-electron density.
One may begin to understand how information regarding the

pair density is transmitted to the one-electron density in terms
of the behavior of LJF. In the case of PH3 for example, placing
e* on a proton causes the Fermi hole to be strongly localized
within the basin of the hydrogen atom, thereby leading to the
formation of a nonbonding maximum in the same-spin density
on the phosphorus atom with a percent exclusion in excess of
99%. Thus the conditional pair density in the nonbonded region
reduces to the one-electron density, as shown in Figure 3f, and
it is this density that yields the nonbonding charge concentration
in the VSCC of theL(r ) distribution for the phosphorus atom.
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